Choice of Theoretical Method

General Considerations

1

- Resources
 - Software
 - Computer
- "Expense" (Time and Money)
 - Optimization/Single Point Calculations
 - ▶ Basis Set Choice
 - Method Choice
- Accuracy
 - ► Comparison
 - Recommendations

2

Resources

Software

- Methods "packaged" with software
 See software comparison sheet
- Basis functions "packaged" with software
 Can download from http://www.emsl.pnl.gov:2080/forms/basisform.html
- Available parameters for atom types
- Size of molecule

Resources

Computer

- Speed
- ► Fast chips/IO
- Parallel processors
- Memory use for optimization algorithm (*D* = degrees of freedom like bond length, bond angle, etc.)
- Scales as D for Conjugate Gradient, Fletcher-Reeves, Polak-Ribiere
- ► Scales as *D*² for Simplex, Powell, quasi-Newton, Fletcher-Powell

4

Expense

Time and Money

- Optimization
- t(optimization) $\approx 5 \times D^2 \times t$ (single point)
- Basis Set (*N* = number of orbitals, *M* = number of atoms) MM / MD scales as *M*²
 - AM1 / PM3 scales as N^2 to N^4
 - ► HF scales as N² to N⁴
 - ► DFT scales as N³
 - ► MP2 scales as N⁶
 - MP4 scales as N⁷
- ► Full CI scales as M

5

 Method For single point calc basis set on Cray S\ 	ulation of C ₆ H /I (Young):	I_6 using cc-pVTZ
PM3 HF MP2 MP4 G2 CBS-APNO QCISD G3	11 s 10 min 32 min 36 hr 37 hr 63 hr 10 hr 20 hr	11 Mb 42 Mb 43 Mb 2.1 Gb 2.5 Gb 6.5 Gb 1.9 Gb 1.6 Gb
CBS is Complete Basis Set QCISD is Quadratic Configuration Interaction		

Accuracy

- References
- J B Foresman and Æ Frisch, *Exploring Chemistry with Electronic Structure Methods*, 2nd ed, Gaussian (1996), ISBN 0-9636769-4-6, pp 147-148 and 157-158.
- D C Young, *Computational Chemistry*, Wiley (2001), ISBN 0-471-33368-9, pp 137-141.
- R Janoschek, Pure Appl Chem, 73 (9), 1521-1553 (2001).
- NIST Computational Chemistry Comparison and Benchmark Data Base at
 http://srdata.nist.gov/cccbdb

7

Accuracy

Considerations
 Molecule Set

- ► G2
 - Originally 125 calculations
 - 1st and 2nd row heavy atoms
- Extended G2 sets
- ► G3

- 299 calculations from G2/97 set

Parameters

Mean Absolute Deviation (MAD)

- Average of deviations neglecting sign
- Standard Deviation
- ~2/3 results lie within StdDev of experimental value
- ► Largest Errors
- Worst case values

8

Accuracy

Energy Comparision for Basis Functions [MAD/(kcal mol⁻¹), Foresman/Frisch]

- HF
 - ▶ 93.3 for STO-3G
 - ► 58.4 for 3-21G(d)
 - ► 51.0 for 6-31G(d)
 - ► 46.7 for 6-31+G(d,p)
- B3LYP
- ► 7.9 for 6-31G(d)
- ► 3.9 for 6-31+G(d,p)
- ► 3.1 for 6-311+G(2d,p)

Accuracy

Energy Comparision for Standard Methods [MAD/(kcal mol⁻¹), Young]

- Mechanics
 - ► E not calculated in MM2 / MM3
- Semi-empirical
 - ▶ 18.8 for AM1
 - ▶ 17.2 for PM3
- ∎ ab initio
- ► 51.0 for HF/6-31G(d)
- ► 7.9 for B3LYP/6-31G(d)

10

Accuracy

Energy Comparision for "Mixed" Methods [MAD/(kcal mol⁻¹), Foresman/Frisch]

- AM1 optimization followed by single point
- ► 54.2 for HF/6-31G(d)
- ► 18.8 for AM1
- ► 10.5 for B3LYP/6-31G(d)
- B3LYP/6-31G(d) optimization followed by single point
- ► 7.9 for B3LYP/6-31G(d)
- ► 4.0 for B3LYP/6-31+G(d,p)
- ► 3.2 for B3LYP/6-311+G(2d,p)
- ► 2.7 for B3LYP/6-311+G(3df,2df,2p)

11

Accuracy

Observations (Foresman/Frisch)

- Semi-empirical energies are more accurate than HF
- DFT energies are rather insensitive to geometry optimization used
- DFT energies are more accurate using highly diffuse/polarized basis sets
- Additional basis sets are not as important for optimization as for predicting properties

Accuracy

Other Comparisions for Standard Methods (Young)

- $\Delta_{\rm f} H$ [StdDev/(kcal mol⁻¹)]
 - ▶ 0.5 for MM2
- ► 0.6 for MM3
- ▶ 8 for AM1 / PM3
- ► 4 for HF/6-31G(d)
- Bond Lengths (rms/Å)
- ► 0.01(StdDev) for MM2 / MM3
- ► 0.048 for AM1
- ► 0.037 for PM3
- ► 0.032 for HF/6-31G(d)
- ▶ 0.048 for MP2/6-31G*
- ▶ 0.020 for B3LYP/6-31G(d)

13

Bond Angles (rms/°)

- 1.0(StdDev) for MM2 / MM3
- ► 3.3 for AM1
- ► 3.9 for PM3
- ► 1.4 for HF/6-31G(d)
- 1.5 for MP2/6-31G*
- ▶ 1.4 for B3LYP/6-31G(d)
- Dipole Moments (StdDev/D)
 - ▶ 0.1 for MM2
 - ▶ 0.07 for MM3
 - ▶ 0.5 for AM1
 - ► 0.6 for PM3
 - ► 0.2 for HF/6-31G(d)

14

Accuracy

Recommendations

- Use DFT with largest basis set for energy calculations following an optimization using
 - DFT with largest basis set
 - ► DFT with good basis set
 - ► HF with good basis set
 - ► HF with small basis set
 - ► Semi-empirical methods

Use "Multilevel" Methods

► G2

- Initial geometry optimization and zero point vibrational energy (E_1) using HF/6-31G(d)
- Final geometry optimization at MP2/6-31G(d)
- Diffuse energy term (E_2) using E[MP4/6-311+G(d,p)] -*E*[MP4/6-311G(d,p)]
- = Polarization energy term on heavy atoms (E_3) using E[MP4/6-311G(2df,p)] E[MP4/6-311G(d,p)]= Residual correlation effect energy term (E_4) using E[QCISD(T)/6-311G(d)] E[MP4/6-311G(d)]
- Additional correction for assumption that 2df and diffuse corrections are additive and for 3rd set of f functions on heavy atom and 2nd set of p functions on H atom (E_5) using E[MP2/6-311G+G(3df,2p)] -E[MP2/6-311G(2df,p)] - E[MP2/6-311+G(d,p)] + E[MP2/6-311G(d,p)]

16

- Empirical estimate of remaining correlation energy $(E_{\rm e})$ using (-0.00481)×(# valence electron pairs) -(0.00019)×(# unpaired valence electrons)

- $-E = (0.8929)E_1 + E[MP4/6-311G(d,p)] + E_2 + E_3 + E_4 +$ $\overline{E_5} + E_6$
- MAD for E = 1.1 kcal mol⁻¹, $\Delta_{\rm f} H = 1.6$ kcal mol⁻¹
- Several flavors of G2

17

► G3 $- E_2 \text{ using } E[\text{MP4/6-31+G(d)}] - E[\text{MP4/6-31G(d)}] \\
- E_3 \text{ using } E[\text{MP4/6-31G(2df,p)}] - E[\text{MP4/6-31G(d)}] \\
- E_4 \text{ using } E[\text{QCISD(T)/6-31G(d)}] - E[\text{MP4/6-31G(d)}] \\
- E_5 \text{ using } E[\text{MP2/G-31eG(d)}] - E[\text{MP2/6-31G(2df,p)}] - E[\text{MP2/6-31+G(d)}] + E[\text{MP2/6-31G(d)}] \\
- E_6 \text{ using } (-0.006386) \times (\# \text{ valence electron pairs}) - (0.0020721) \times (\# \text{ uppaired valence}) = 0.0020721) \times (\# \text{ uppaired valence}) = 0.002$ (0.002977)×(# unpaired valence electrons) $-E = (0.8929)E_1 + E[MP4/6-31G(d)] + E_2 + E_3 + E_4 + E_5 + E_5 + E_4 + E_5 + E_5$ E_{6} - *t*(G3) ≈ *t*(G2)/2 - MAD for $\Delta_f H = 0.9$ kcal mol⁻¹ - Several flavors of G3

- ► CBS-Q is similar to G2 using
- MP2/6-31G(d^{\dagger}) for geometry 6-311++G(2df,2p) for HF and MP2 MP4/6-31+G(d,p) and QCISD/6-31+G(d^{\dagger})] for higher order corrections

- order corrections HF/6-31G(d[†]) for thermo with 0.918 scale factor Empirical correction for electron correlation Empirical correction for spin contamination $t(CBS-Q) \approx t(G3)$ MAD for E = 1.0 kcal mol⁻¹, $\Delta_{t}H = 1.2$ kcal mol⁻¹ Several flavors of CBS

19